linna.utils#
Functions
|
|
|
|
|
Returns the counter examples (w.r.t. |
|
|
|
|
|
Loads a TensorFlow network ( |
|
|
|
Write network data to the .nnet file format :param weights: Weight matrices in the network order :type weights: list :param biases: Bias vectors in the network order :type biases: list :param inputMins: Minimum values for each input :type inputMins: list :param inputMaxes: Maximum values for each input :type inputMaxes: list :param means: Mean values for each input and a mean value for all outputs. |
- linna.utils.load_tf_network(file: str) torch.nn.Sequential #
Loads a TensorFlow network (
.tf
file) and returns a PyTorch Sequential neural network- Parameters:
file (str) – File containing TensorFlow network (
.tf
file)- Returns:
Neural network
- Return type:
torch.nn.Sequential
- linna.utils.get_accuracy(loader: torch.utils.data.DataLoader, model: torch.nn.Sequential, size=None)#
- Parameters:
loader (torch.utils.data.DataLoader) – Data loader
model (torch.nn.Sequential) – Neural network
size (Optional[int]) – Number of inputs to consider
- Returns:
Accuracy of network
- Return type:
float
- linna.utils.load_model(path)#
- linna.utils.load_experiment(path)#
- linna.utils.save_results(accuracies, reduction_rates, file_name)#
- linna.utils.get_counterexamples(original_model, reduced_model, loader, true_label=False)#
Returns the counter examples (w.r.t. classification)
- Parameters:
original_model –
reduced_model –
true_label –
- Returns:
- linna.utils.forward(torch_model, X, layer_idx, grad=False)#
- linna.utils.writeNNet(weights, biases, inputMins, inputMaxes, means, ranges, fileName)#
Write network data to the .nnet file format :param weights: Weight matrices in the network order :type weights: list :param biases: Bias vectors in the network order :type biases: list :param inputMins: Minimum values for each input :type inputMins: list :param inputMaxes: Maximum values for each input :type inputMaxes: list :param means: Mean values for each input and a mean value for all outputs. Used to normalize inputs/outputs :type means: list :param ranges: Range values for each input and a range value for all outputs. Used to normalize inputs/outputs :type ranges: list :param fileName: File where the network will be written :type fileName: str